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significant accomplishments achieved during the total period of the research effort covered by this
COBINACE 1 Geals witn several topies related 1o the mathematical properues of feadfonward as well as
feedback nets. touching upon the following subareas: For feedforward nets: local minima, uniqueness
of weights, architectures, classification capacity, uses for implementation of state-feedback control —
especially for the control of linzar systems with saturation,— approximation rates, and (PAC) leamning
issues. For recurrent nets: recurrent perceptrons, parameter identification and learning algorithms,
systems-theoretic properties (observability, controllability), and theoretical computational capabilities.




I INTRODUCTION 1

1 Introduction

A huge amount of activity has taken place during the last few years in the area encompassed by the
term “artificial neural networks,” as evidenced by the proliferation of conferences, journals. electronic
discussion groups. and patent applications. This area had seen many periods of hype (and justified
reaction to that hype) since the late 1940s. While there was continuing activity by major researchers
such as Kohonen and Grossberg all along. the latest resurgence in interest was due in large part to
the appearance of two separate lines of work: (1) feedforward nets or “multilayer perceptrons” with
sigmoidal activations™ to be fit to data through nonlinear optimization, and (2) feedback nets, with a
technique for associative memory storage and retrieval due to Hopfield. The impact of this work was
amplified by the coincidental sudden easy availability of huge raw computational power, in amounts
which were unimaginable when similar ideas had been considered in the past.

Main Motivation for This Work

Many practical successes of the associated technologies have been claimed in both the engineering and
popuiar press. In the context of the AFOSR mission, one may mention a 1990 workshop centered
on aerospace applications of neural nets, which took place at McDonnell Douglas Corp. and was
attended by numerous AFOSR contractors (including the first PI) and researchers from several AF
development labs. Presentations focused on the use of network techniques in flight systems design.
Sucii as {auit deteciion and Classiiicuiion (und associated probiems oI reconfigurabie aircrart control).
dev empmcn[ of controls valid over large flight envelopes, and even precision laying of composites on
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siwdy of e cupabiiiiies and performance of neural networks. The PI's are mathematicians who are
currently engaged in a program of research whose main purpose is to carry out a rigorous mathematical
analysis 1or a number of problems in neural nets for which. so far, only heuristic methods have been
developed. They believe that such a development, besides being intrinsically of interest, leads to a better
understanding of the issues involved in the design of efficient algorithms as well as in understanding the
possioilities and limitations of these models.

Another Motivation -~

There 1s another motivation as well that underlies the work described here, and is more basic than the
undﬂrstandmc of neural net models in themxel\ as Thic arices fram an issie that hac come tp in mony
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between on the one hand the continuous, physical. world and on the other hand discrete devices such
as digital computers capable of symbolic processing. Lately the term “hybrid” systems has become

- thils context.

Fer instance. classical control TEChmq‘!‘;PQ P<r\m‘in”y far linear cvstamc have nraved cnactacnlarly
successful in automatically regulating relatively simple systems; however, for large-scale problems,
controllers resulting from the application of the well-developed theory are used as building blocks of
more complex systems. The integration of these systems is often accomplished by means of ad-hoc
techniques that combine pattern recognition devices, various types of switching controllers, and humans

*Contrary to popular misconceptions, multilayer nets ~but with discontinuous activations— had already been much studied
in the widely unread but widely cited early 1960s book by Rosenblatt, and feedback nets were studied by him as well.
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—or, more recently, expert svstems,— in supervisory capabilities. This has caused renewed interest
in the formulation of mathematical models in which the interface between the continuous and the
symbolic 1s naturally accomplished and system-theoretic questions can be formulated and resolved for
the resulting models. Successful approaches will eventually allow the interplay of modern control theory
with automata theory and other techniques from computer science. This interest has motivated much
research into areas such as discrete-event systems. supervisory control, and more generally “intelligent
control systems”. The present work has as one of its underlying objectives the analysis of neural
networks as a paradigm in which to understand many of these issues. Other paradigms could be used as
well: it so turns out that neural nets are a particularly appealing and extremely natural class of nonlinear
systems.

Similarly, in numerical analysis and optimization, much activity has taken place in the realm of
continuous algorithms. Included here are such areas as differential-equation implementations of ““interior
methods” for linear and nonlinear programming,. the use of flows on manifolds to solve eigenvalue and
optimization problems (in particular the work of Brockett and his school) and the Blum-Shub-Smale
approach to “real valued” algorithms. All these deal in one way or another with the power of “analog
computing” to solve problems that can also be attacked with discrete/symbolic techniques. Again, we
view the neural net paradigm as one in which to explore the interface between “digital” and “analog”
modes of computation. In fact, recent work by one of the PIs and his students has succeeded in
formulating a new computer-science approach to these issues, as will be described in the report.

Vv hy NNeural Nets?

A e - . N ~ . - ~ . -y
i
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Siotivaiing the use of nats is the beliel that in some sense they are an especially appropriate iom h
parameiernized models. as opposed to. say ﬁm*—‘ Fouvrier ceries or snlines, Tupicnl ergi
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numernival and stanisiical advaniages ae suid o include excellent capabtiites ror “icaming,” “adapia-
tion.” and “‘generalization.” We do not argue the case for or against this belief here. Notwithstanding
soms popular claims to the contrary (for instance. supporied by recent rate of approximation results,
a topic which is reviewed in the report) we feel that the situation is still very unclear regarding the
relative merits of using neural nets. In any case. it is quite likely that techniques based on neural
networks will play some role as part of the general set of tools in estimation, learning, and control. As
mathematicians, we are interested at this stage in obtaining a deeper understanding of the topic, as a
prerequisite to theoretical comparisons.

Scope and Organization of the Report

e e aren too hroond andali-denned For

The tenn "neural network” tends to be applied loosels, mat
purposes of this report, however, we adopt the most popular paradigm: (artificial) neural nets are sys-
tems composed of saturation-type nonlmearltxes linear elements, and optlonally dynamlc components

tamentnre BN Aatay NI
""‘ crratsrs N continuous time., GC.avs5in discres me) Yo i1l St 11141ML;~. SUG [T this delinition leaves

out a variety of topics sometimes included, such as “‘radial basis” networks or multiplicative effects. (By
NWTOWING-UOWN e dred we can get stronger general mathematical resuits, but no value judgments are
implied regarding the interest of such alternative structures.) It is possible to organize the topic, once it
is so defined, by classifying nets into broad categories, and studying separately different mathematical
questions that are natural for each subclass.

The topics to be discussed will be organized roughly into these broad categories:

¢ No Dynamics (“Feedforward Nets™)
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Local Minima and Uniqueness of Weights

Architectures and Classification Capacity

Uses for Implementation of State-Feedback Control

o Single vs Multiple Layers
o Control of Linear Systems with Saturation

Approximation Rates

Learning
¢ Linear Dynamics (“Recurrent Perceptrons’™)
¢ Nonlinear Dynamics (“Fully Recurrent Nets”)

— Parameter Identification, Observability, Controllability.

— Computational Capabilities

The next Part provides a brief outline of the above areas, with as few technical details as sufficient
to convey the main issues and resuits. The last Part provides some more details on selected subtopics,
but overall most of the discussion in this report is informal, with references to the literature for precise
technical points.
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2 Overview

As discussed above. by an artificial neural net we mean here a system which is as an interconnection
of basic processors, each of which takes as its inputs the outputs from other processors as well as
from outside the system. and performs a certain nonlinear transformation o : R — R (the “activation
function”) on an affine combination of these inputs. For simplicity, we will assume that each processor
uses the same transformation ¢. The coefficients of the affine combination, or “weights,” of course
vary from processor to processor. The output signal produced by each such basic processing element
is broadcast to the rest of the system: some of the signals are combined into the output of the whole
system. Thus the basic unit for interconnections is as in Figure 1.

Y

affine

inputs '@ > output
combination

Y

Figure 1: Basic Processing Element

The interconnection structure is often called the architecture of the net; together with the choice of
7 and the values for weights —which are tvpically thought of as “programmable” parameters and are the
subrect of numerical optimization— it determines completely the behavior of the network: later we of
course give more prec1se definitions.
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sign function when the ‘gain” 7 1s large in tanh(jwr) Equivalently, up to translations and change of

i

coordinates. one may use the standard sigmoid

1

oslz) = -

Also common 1n practice is a piecewise linear function,

(-1 ifr< -1
Tlr) = 1 ite > 1
This 1y somettmes called 2 “semilinear” or “satu d linearity” function. See Fig 2
Y —
/ Ve

s /

. -

sign & tanh

Figure 2: Different Functions o

Whenever time behavior is of interest, one also includes dynamic elements, namely delay lines if
dealing with discrete-time systems, or integrators in the continuous-time case, so that a well-defined
dynamical system results.
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Static nets are those formed by interconnections without loops —otherwise the behavior may not
be well-defined- and are also called feedforward nets, in contrast to the terms feedback, recurrent, or
dvnamic nets used in the general case. Figure 3 provides “block diagrams” for the examples of a static
net computing the function

y =20[30(5u; — uz) + 20{uy + 2us + 1)+ 1] + So[-3c(u; + 2us + 1) — 1]
and a continuous-time dynamic net representing the system

ity =02z 4+ —up+ us), ¥ =0c(—12+3u1), y=2z;.
y

' 2

5 -1 X I
U 1 @"@—'—*@* y Uy > 5"'@" y
A
—1 / 1 i
I
uy ®+@4@ ~@ w01~
_1 -1
Figure 3: Examples of one Feedforward and one Recurrent Net
Mathematically we think of feadforward nets as computing functions between finite —dl..M nsicnal
input and output spaces: for instance, in the first example in Fizure 3 the net induces a maoping R — R.
Dynamic nets. in contrast, are a subclass of svstems in the sense of control theorv and must he defined in
ear—o of i acanrial or Ao o I 1 R e o N
N Gsacivaicritidd UF GWitiCieiivd \,\.JL“\,‘H: \‘v:ulixluun.\u “‘“"Lt’“ s, Llp\ .: K 3T LD 1T ool

function spuces. ror instance. the second c:\‘ampie in Figure 3 could be seen as inducing a manping
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and as approximators of functions. and appear for instance when 1mn1°mpmmg tic Y”do ¢ laws for
certain controlled systems. Dynamic nets provide an appealing s of nonlin dx namxcal systams,
and have been used in implementations of classifiers for prw‘.:m th .‘.'c‘,"inz corrcl"t :d tempore 1 cate,

5 s
as well as universal models for adaptive control. Some of these roles will be discussed more Iater.

An intermediate case of interest between feedforward nets and the full feedback structure is given
by what the PIs call recurrent perceptrons by analogy with the perceotrons that have classically been
studied in the arca. Inthis case, the dynamical behavior 1s inzar but there s & i ' ‘

This special case will be discussed separately

iocal Minima and Yyeight Uniqueness for Feedforward Neis

Typical applications of neural nets are to binary classification internalation, and function appravimarion
probiems. For any given fixed architecture (and choice of activation function), the free pmd neters

A U B A R T A1 N i
‘\.vl‘c..t‘,/ (VR .W.J;;;u,u TERVISE NP u\,uu,L uljt,L\J/\Aleu.Lk— o3 uumuun UL auuul o L.luosnim.xuun UUJwalVC

During a training or supervised learning stage, labeled examples are presented, and parameters are
adjusted so as to make the network’s numerical output close to the desired values. A steepest-descent
(orelaborations thereof) minimization of an error criterion is often used at this point. Later, during actual
operation, the output given by the net when a new input is presented will be taken as the network's guess
at the “right” value. Presumably, one advantage of using nets in this mode is that the parallel processing
structure of nets means that this guess could be computed fairly fast in special-purpose hardware.
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One may attempt to justify the use of such models for prediction applications on the basis of
computational leaming theory —see below— but most empirical work uses statistical cross-validation
techniques for this purpose. Whatever the justification, a major set of issues to be addressed centers on
the fact that the procedure involves a hard nonlinear minimization problem. Thus, understanding the
structure of the set of local minima of the error function is a must. In early work in this area by the
PIs and others, the existence of nonglobal local minima was rigorously shown to happen in even the
simplest possible architectures. For a special case, a recasting in terms of “nonstrict” error functions
results in a problem which does not suffer from spurious local minima, and for which gradient descent
can be shown to converge globally (see [1]), but in the general case the existence of such obstructions
is unavoidable.

Moreover, and related to this, many weights could potentially give rise to the same input/output
behavior, and this multiplicity will obviously affect the optimization algorithm, since then different
weights give the same cost. Hence. one must ask what the group of behavior-preserving weight
transformations Jooks like. This question was posed in the late 1980s by Hecht-Nielsen. An answer
was provided with a general result characterizing the possible symmetries for the general case of one
hidden layer (1HL) nets —the most widespread architecture— by one of the Pls, in [4]. Such nets are
those which diagrammatically can be represented as:

\‘/ :/ N T L .\\\,\ '
\\ // * Z\\,\A‘ YL
/Y —w g
PEPEERNN T
Died T o
K Cry
) _Jé-o—
v Vo

Figure 4: Ore Hiddesy Lover (THL) Not

Here one deals with functions that can be expressed in the form of an affine combination of terms each
of which consists of the activation o applied to an affine combination of inputs:

co - c.otBiu+b;) (D
i=1
vifier £, 1s the tth row of the matrix 4 of interconnecton coefficien:s from inputs u; to the “hidden
layer.” In more compact notation, the function represented is f(u) = CF,(Bu + b) + co, where
&, R — B™ indicates the application of ¢ to each coordinate of an n-vectorn:

(T . 7)) = (alxy).....olxy)). (2)

(The subscript n will be omitted as long as its value 1s clear from the context. Also, these notations
are used if there are vector instead of scalar outputs y, in which case (' is a matrix and ¢y a vector.)
In other words, the behavior of a 1HL network is a composition of the type fodog, where f and g are
affine maps. In the case when u is a scalar (m=1), one is studying the span of dilates and translates of
o, somewhat in the spirit of wavelet theory. The interest is in understanding how many possible such
representations there may exist for a given function.
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The result in [4] established the finiteness of the group of symmetries under obvious generic
assumptions —for instance, if some ¢; vanishes. the corresponding B; cannot be unique- for the special
case of the activation tanh. The result is that invariance only holds under the obvious transformations:
permutations and sign reversals in each term. The proof is based on asymptotic analysis techniques.
In work of the other PI and coworkers ([17]) the result was extended to a wide class of real-analytic
functions, using residue arguments. (The issue of weight symmetries has also been studied for recurrent
nets, by the PIs and students, as mentioned later.) Together with results guaranteeing that a small number
of samples is enough in order to determine the external behavior, as shown in the recent paper [33] as
a consequence of results on stratification of subanalytic sets, this means that the map that evaluates the
function at sufficiently many samples has generically discrete fibers. Together with recent results in
logic that apply to tanh (again see [33]), this provides results on generic structure of local minima sets
for the error function.

Architectures and Classification Capacity

It is essential to understand how many units are needed in order to solve a given classification or
interpoiation task. One of the PIs has worked substantially on such issues (see e.g. [3]), and this will be
described in the report.

Aclosely connected question concemns the study of the relative advantages of different architectures.
In particular. it is by now well-known. thanks to the pioneering work of Cybenko. Hornik. White.
Lesnno. ana otners. tnat 1 HL nerworks have universal approximation properties. assuming very little
on the activation ¢ besides it not beimy polynomial (for simp e proofs which apply for restricted but
Vel guliz il fdensity pronermisg in gpaces
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However, the quality of approximation with such 1HL architectures may not be as good, for fixed
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instance, the cha aracteristic function of a square in the plane can be easm approximated by a mvo hzdden
laver (7HL net, but good approximations using 1HL nets require many terms. More generally, one

can make <tatements for clagges well. "lhh?‘/'\\lmﬁ"ﬂf‘] hv certain multivariata sp nlin
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theorems hold. One of the Pls, in [2], gave a general theorem that deals with this issue. A basic
probiem is that uniform approximation of discontingous functions is in general impossible using 1HL
nats: tachn . therz 1s no density on L7°, even on compact subsats, and an even stronger negad

the impossibility of constructing sections of certain coverings. This has serious

disadvantage of 1HL vis a vis 2HL nets arises from the topologies in which the 1HL aoproxlmanon

e
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8
Devn noled eapernnentaily by many authors, Tne same problem appears in comrol applications, as

explained later

implementations of State-Feedback Control; Saturated Actuators

Among the most popular areas of application for neural networks is that of control (see for instance the
survey [18]). This part of the report touches upon various aspects of that topic.

One line of recent ~but already widely cited- work of the PIs deals with the use of networks for the
contro!l of linear systems subject to actuator saturation,

&t = Az + Bo(u)
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where 4 and B are as usual in linear control theory and ¢ is a saturation such as tanh or =. It is
often said that saturation is the most commonly encountered nonlinearity in control engineering, so the
development of techniques for the control of such systems is obviously of great interest. Our work starts
with the result by Fuller, around 1970, that it is in general impossible to globally stabilize the origin of
such systems by means of linear feedback u= Fz —for a more general result along those lines, see [23]-
even if the system is open-loop globally controllable to the origin. This suggests the obvious question
of searching for nonlinear feedback laws u=*k(x) that achieve such stabilization. The interest here is in
nicely behaved and easily implementable controllers, in contrast to optimal control techniques, which
result in highly irregular feedback.

In 1990 work the Pls proved that smooth stabilization is always possible. Motivated by our paper,
Teel showed that single-input multiple integrators can be stabilized by feedbacks which are themselves
compositions of linear functions and iterated saturations. We were then able to extended Teel’s result
to arbitrary linear systems as above; see [26]. This is very satisfying mathematically: the control of
a linear system involving saturation is achieved by a feedback law built —in a fairly simple manner—
out of similar components. Pursuing this research further, we have now arrived at the rather surprising
conclusion that one may always use the simplest possible nonlinear architecture, namely 1HL nets. (See
[39] for a summary; the full paper will appear in [11]). As an application, the paper [34] describes an
explicit example of control design for an F-8 aircraft subject to elevator rate constraints. Much needs to
be done in this area, as our results provide unacceptable performance, but the improvement with respect
to linear feedback is remarkable.

Thus. 1HL nets are found to be useful in controlling certain nonlinzar systems, which is consistent
with the designs proposed in much of the neurocontrol literature. The avallablhtv of a simple structure

“«,’:1:. P'A“rt cidantifaklae nnA Tnv'\ﬁl—\]n r\qrﬂmafn— J- avemarmaalor A Ao
WO CZArTiv o dsniinanie e 5 CRUTEGNSY GO 0
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“universal” enough for the implementation of controllers, in a precise sense reviewed later. This was
first pointed out in the paner [7] which alen gave a o,an,:-rfﬂ thaaram chmnunn that ron hiddan h-u:v-c (anAd

disconiinuous activations) are sufficient. (The contribution was recocmzed with an honorahlé mention
for outstand.ng paper in the IEEE Transactions on Neural Networks for 1992.)

. - o Al At~ S el e s
......... he reasen for this apparen

prob ems (_one must solve for a trajectory satis fvmcv certain boundary conditions). For such as pointed

out above, more general archlt ctures are neaded. To give an outline of how this obstruction can occar,
consider the following situation. Suppose that the objective is to globally asymptoticallv lize a

clonar svstem

= flx.u)

With respect W th
examples for which there is no continuous feedback law that wiil achieve stabilization. even if the
original system is very simple. So no 1HL net with continuous activations would be able to accomplish

tha ctatad Ahiactiva Ryt what akont "‘IO J EP S A S T AR e
tne cat2s ob2chive,

he origin using controliers =407} implementadble by THL nets. 1t is easy 1o give

AT .~ (ST IRV lL uuuu» ¢ SGCH A [LZaAYiIisias Acuyaudns, (SR
ignore for now questions of possible nonexistence of solutions for ode’s with discontinuous right-hand
SlUes! Lie prodiein Wil De even more basic.) it trns out that even then 1t may be impossible to stabrhze.
Indeed, assume that we know some discontinuous feedback law ky(z ) which stabilizes. It would appear
that one can then obtain () simply by approximating ko. However, as we said in an earlier section, it
is impossible in general to approximate a discontinuous k¢ uniformly by 1HL functions (this is an easy
result pointed out in [2]). A weak type of approximation may not be enough for control purposes. For
instance, it may be the case that for each approximant k¢ there is some smooth simple closed curve I’
encircling the origin where the approximation is bad and that this causes the vector field f(z, ko(z))
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to point transversally outward everywhere on I'; in that case trajectories cannot cross I'. Thus a bad
approximation in a very small set (even of measure zero) can introduce a “barrier” to global stabilization.

The paper [2], for discrete-time, constructs examples of systems which are otherwise stabilizable
but such that every possible feedback implementable by a |HL net (with basically any type of activation,
continuous or not) must give rise to a nontrivial periodic orbit. On the other hand, it can be shown that
every system that is stabilizable, by whatever &, can also be stabilized using 2HL nets with discontinuous
activations (under mild technical conditions, and using sampled control). See [2] for details.

To summarize, if stabilization requires discontinuities in feedback laws, it may be the case that no
possible 1HL net stabilizes. Thus the issue of stabilization by nets is closely related to the standard
problem of continuous and smooth stabilization of nonlinear systems, one that has attracted much
research attention in recent years. Roughly, there is a hierarchy of state-feedback stabilization problems:
those that admit continuous solutions, those that don’t but can still be solved using 1HL nets with
discontinuous activations, and more general ones (solvable with 2HL). It can be expected that an
analogous situation will be true for other control problems. Perhaps the reason that most neurocontrol
papers have reported success while using 1HL nets is that they almost always dealt with feedback
linearizable systems, which form an extremely restricted class of systems that happen to admit continuous
stabilizers.

Approximation Rates

Certain recent results due to Andrew Barron and Lee Jones have been used to support the claim that

(1HL) neural netwnrk approximations mav require less parameters than conventional techniques, What

IS meant 0L s Is thal approstinations of functions in ceriain classes (defined wypicaliy 1a hgfmomc
anaivsis erms or ov bounds in suitable Soboiev norms) 1o within a desired error tolerance can be obtamned
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splines, or Fourier series, would require an astronomlcal number of terms, espec1ally for multivariate
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and Jones. Their results applv in pmﬂple also to give efficient a ﬂp roximations with various types of
classical basis functions, as long as the basis elements can be chosen inan onlmearfashzon JU){ as with
neural networks, Ferinstance, splines with varying (rat 1X0d) nod ONOMISITIC 5EMies
with adaptively selected frequencies, will have the same properties. Vh important is the possibility
of selecring terms adaptively, in contrast to the use of a large basis containing many terms and fitting
hése through the use of least squares. Thus. the rmportant fact about the recent results is that they
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ity weil every element in an kEuc ¢ can do
so.) For an exposition and a precxbe theorem comparing rates of approximation by such neural net and
nonlingar adaptation approaches vs. rates obtainable with classical approximation techniques sce the
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an L™ result as well). In robust estimation, the advantages of norms different from quadratic are
well-known. This motivated the work {37], [14], which established good rates of approximation when
measuring errors in several L? norms as well as limitations of the “greedy” or “incremental” technique
suggested by Jones in his study of neural nets and projection-pursuit estimation. The work in {37], [14]
is based on ideas from the theory of stochastic processes on function spaces and techniques related to
moduli of smoothness in Banach spaces.
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Learning

The use of networks for pattern classification and related applications makes imperative the theoretical
study of the question of learning. One of the main current approaches to defining and understanding
the meaning of “leamning” is based on the probably approximately correct (“PAC”) model proposed in
computational learning theory by Valiant in the early 1980s. Very closely related ideas appeared in
statistics even earlier, in the work of Vapnik and Chervonenkis and the interactions between statistics
and computer science are the subject of much current research; for a quick survey of some basic results,
see for instance [18].

In the PAC paradigm, a “learner” has access to data given by a labeled sample generated at random,
with inputs independently and identically distributed according to some fixed but unknown probability
measure. [t is assumed that there is some fixed but unknown function generating the data, and this
function belongs to some known class of functions which is used to characterize the assumptions
(“bias”) being made about what is common among the observed input/output pairs. The learner knows
the class but not the particular function generating the data. (For instance, in linear dynamical systems
identification, the class could be that of all stable SISO systems of a certain McMillan degree.) The
learner’s objective is to use the information gathered from the observed labeled samples in order to
guess the correct function in this class, or, more precisely, to make a good guess as to the correct
output for unseen inputs. (This can all be formulated elegantly in terms of L! norms. Also, note that
many variations are possible, for instance allowmo a hypothesis” which is in a different class, allowing
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samples, an d so forin.) Learnability can then be defined in an information-theoreric sense, in terms

[SN

of the requirement that a relatively small number of samples be generally sufficient 1o obiain 2 good

approximation of the unknown function. or 1n a complexirv-rheoretic sense, reguiring that in addition
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ror binary runctions (that 1s, classification problems) and the information-theoretic question, the
situation can be well-characterized in terms of the Vapnik-Chervonenkis (VC) dimension of the class
of functions. Finiteness of this measure is necessary and sufficient for PAC learnability. For networks
with disconrinuous —more preusely Heaviside— activations, finiteness of VC dimension has been known
for a long time. based on the work of Haussler and Baum. However. this did not apply to nets as
implemented in practice, as differentiability 1s required for gradient descent algorithms. Recently, in
the joint work [33], we solved the long-standing open question of showing finiteness of VC dimension,
and hence learnability in the information-theoretic sense, for the more realistic case of sigmodal nets
using activations tanh and other stan_ard activations. The results are based on very recent work in logic

“also the finiteness of VC dimension for multivariate sparse polynomials, which had been an

open question in theoretical computer ence.

Smplexity-incoretic aspecis of learming, 1t was known since work of Blum and Rivest
several years ago that with Hunmde activations the problem is not learnable (this amounts to showing
NP-hardness of the “loading problem™) but for continuous activations, and in particular again for the
activanions used in practice such ax tanh, the question s still open. (There have been rasults announcad

in late 1993 applying to binary inputs. but for real-valued inputs the question is not settled) Recent
research (see [13]) has made partial progress towards that goal.

Linear Dynamics (“Recurrent Perceptrons”)

We now tumn to recurrent nets, that is, the case in which the interconnection graph has loops and so a
dynamic interpretation of behavior is necessary. A degenerate case is that in which no loop contains a
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nonlinear element o. Such systems are described by cascades of a linear system —in the standard sense
in control theory— with a feedforward net. The simplest case is given by a difference or a differential
equation

z(t+ 1) [orz(t)] = Azr(t)+ Bult), yt)=o0,(Cx).

in discrete- or continuous-time respectively (dot indicates time derivative), where 4 is an n x n matrix,
Bisn xm,and C is p x n. Here o, is amap which in each coordinate is a saturation-type nonlinearity,
such as sign, 7, or o;. We call such systems. for which the dynamics are linear but the outputs are
subject to the limitations of measuring devices, constrained-output (linear) systems.

There are many reasons for studying such objects besides neural networks. As mentioned earlier,
there is a generally recognized interest in understanding the continuous/discrete interface; one natural
first step is the study of partial (discrete) measurements on the state of a continuous dynamical system,
in the style of symbolic dynamics. One of the first questions that one may address concerns the nature of
the information that can be deduced by a symbolic “supervisor” from data gathered from such a “lower
level” continuous device, using appropriate controls in order to obtain more information about the
system. Most sampling involves some form of quantization into a discrete range; a special case of this,
1-bit quantization, is that in which ¢ simply takes the sign of each coordinate, giving rise to sign-linear
(SL) systems. These were the focus of the paper [6] by one of the PIs and a graduate student, which
provided a complete necessary and sufficient characterization for the state-observability of SL systems,
expressed in terms of algebraic rank conditions similar to the linear case. The results in that paper and
related work by the same authors parallel those in the linear case. but with some. perhaps unexpectad.
differences. For instance the characterization is different in the continuous- and discrete-time cases.
and controllabilitv properties affect observabilitv. In the more recent work [12]. fhP same questiong
viers asked Tor the case of owrpui-sunra xcd svstems, those for wiich in eacn coordinale ¢ = w, i
Is. the measurement dewce 15 saturated for large values but 1s linear near zero. In this case. an elegant
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Sign-linear systems are also motivated by pattern recognition applications. Indeed, among the
{0s{ pOpUidr technigues 101 thal purpose we thuse pased Upon percepirons OF HNSAr discriminanis.
Mathematically, these are simply functions of the type 8 : R* — RP, §(v) = sign(Cv) (sign is taken in
each coordinate), typically with k& >> p. Perceptrons are used to classify input patterns v = (vy, - -, Uk)
into classes, and they form the basis of many statistical techniques. In many practical situations, ansing
in speech processing or learning finite automata and languages, the vector v really represents a finite
window

ult — 1Y 7ot = 8) N

of a sequence of m-dimensional inputs u{ i ). 1 25, .. ., where the components of (3} have been listed as

v {and sm = k). In that case. the percentron can he nnd retond a< a <ign-linear svstem of dimension n.

with a chift ra
sth a o shttt-re

ngtC uszd to store the previous = inputs (35, Scen in o i

ore than the very special subclass of “finite impulse response™ SL systems (all peles at zao) As SU\,h
they are not su1ted to modeling time dependencies and recurrences in the data. It is more reasonable to
generalize to the case where a convolution by an arbirrary realizahie kemel is taken before the sign, and
this motivated the introduction of SL systems in the engineering and neural nets literature. (Models of
this form also arise in many other areas as well. For instance, in signal processing, when modeling linear
channels transmitting digital data from a quantized source, the channel equalization problem becomes
one of systems inversion for systems that are essentially of this type, with quantizer ¢.) We called the
resulting input/output behaviors sign-linear i/o maps. For these, sign-linear systems constitute the most
obvious class of state-space realizations. Thus one is interested in questions such as minimal dimension
representations and the existence of Nerode-canonical (i.e., reachable and observable) realizations.
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The paper [6] treated such issues. and in particular showed that canonical realizations admit a natural
structure as cascades of linear systems and finite automata.

Recurrent Nets: Models

The general case of recurrent nets considered in this report consists of those systems evolving in R™
according to equations of the type

z(t+ 1)forz(t)] = dn(Az + Bu). y=Cz. )

Any such system is specified by providing a triple of matrices 4. B, C and the activation function o.
We use notations consistent with linear systems theory (when o is the identity), that is, 4, B, and C are
respectively real matrices of sizes n x n, n x m and p x n. See the block diagram in Figure 5, where
Az = z% or = # in discrete or continuous time respectively:

[ T 4'—
u B 7N | Ioa A_l Cv . y
4
Figure 3 Recurien: Nei
Soma voriations af tha ahnve model ore alen of intaract, Forinctance ons finde i rhe Htaraore cvateams
orim2 Torm
F=- +d(dxr + Bu)

with D a diagonal matrix (for "Hopfield nets™ one picks in addition 4 symmetric). Also. the input term
Bu may be outside the nonlinearity. For purposes of this report, we restrict attention to the form (4),
but [7] shows how to transform among different models.

Recurrent nets have been studied for a long time. and appeared early on in the work of Hopfield
as well as among the models considered by Grossberg and his school. They are sometimes interpreted
as representing the evolution of ensembles of n “neﬂrons,” where each coordinate z; is a real-valued

vaneble which reprasents the intarnal state of the ithnzuron. and each v, i = 1. .15 an external
input signal. The coordinates of y(f) represent th output ofp probes, or measurement dences each of
117 Hvr‘h niAaracag rho "lf‘f‘! qfvr\r\ \% 1]1\»\\ r\f: ANy naneane /Yﬂ ™M W‘L\ r\f tL« l frasntiies AT TS :
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oft some coordinates. that is, the Lumponem.\. of y are simply a subset of the components of r.)

With feedback. one may exploit context-sensitivity and memory, characteristics essential in the
nodeling and control of processes involving dynamical elements. Recurrent networks have been
piosed iniie design of control laws for robotic manipulators (Jordan), as weil as in speech recognition
1
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extrapolatlon for time series prediction (Farrmr) In signal processing and control, recurrent nets have
been proposed as generic identification models or as prototype dynamic controllers. In addition, as
discussed later, recent theoretical results about neural networks established their universality as models
for systems approximation as well as analog computing devices.

Electrical circuit implementations of recurrent nets, employing resistively connected networks of
n identical nonlinear amplifiers, with the resistor characteristics used to reflect the desired weights,
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have been suggested as analog computers. in particular for solving constrained optimization problems
and for implementing content-addressable memories. Special purpose analog chips are being built to
implement recurrent nets directly in hardware.

However, and in spite of their attractive features, recurrent networks have not yet attained as much
popularity as might have been expected, compared with the feedforward nets so ubiquitous in current
applications. Perhaps the main reason for this is the fact that training (“learning™) algorithms for recurrent
nets suffer from serious potential limitations. The learning problem is that of finding parameters that

“fit” a general form to training (experimental) data, with the goal of obtaining a model which can
subsequently be used for pattern recognition and classification, for implementation of controllers, or
for extrapolation of numerical values. Various learning methodologies for recurrent networks have
been proposed in the literature, and have been used in applications. All algorithms are based on an
attempt to achieve the optimization of a penalty criterion by means of steepest descent, but due to
memory and speed constraints, they usually only involve an estimate of the gradient. They differ on
the approximation used, and thus on their memory requirements and convergence behavior. Among
these are “recurrent backpropagation,” “backpropagation through time,” and the “real time recurrent
learning” algorithm. Besides an imperfect approximation of the gradient. there is of course the issue
of spurious local minima, as in the feedforward case. Part of this report deals with a new and totally
different approach —based on recent theoretical results— for the identification of recurrent models. This
brings us to the next point.

Paramester Identifica Observability, Controllability

A% feedrorward nets, one can ask about weight uniguenass. In [7] (for continugus-time) and (257
e . . o . L B . = . T
fordiserete-time one of the P i 5y ; does the funciion of the

13, the entries of the matrices 4, B, and C'. A more precise formulatlon 1s as follows. Assume that the
network is started at the relaxed state #(0V=0 (noneguilibrium initial states are the cuhiect of a paner
in preparation) and an input signal u(-) is applied. Let x(-) be the solution of (4) —in continuous-time,
assume that o is globally Lipschitz so z(t) is well-defined for all times— and let y(¢) = Cz(t) be the
output signal thus generated. In this manner. for each triple { 4. B. (") one defines an inpur-outpur
mapping A¢y.pg.cy - ul+) = y(-). The formal question is to what extent are the matrices 4. B.C
determined by the 1/o mapping A4 g ¢y.-

In the very special case when o is the identity, classical linear realization theory implies that,

genzrcaliy. the triple (AL B.(") is determined only up to an invertible change of variables in the
state space. That 1s, except for degenerate situations that arise due to parameter dependenmes (non-
conreallabiling or nenegheervabiling), iF ten teinles (4 D 0 and ih /“‘/ clve rlse to the same
ifreo tmples (L D0 and (AL DO give rise to the same L
behuvior then there 1s an invertible matrix T suchthat 774 AT = 4, 7718 = B, and (7 = . Thisis

the same as saying that the two systems are equivalent under a linear change of variables J:(t) =TZz(t).
Conversely. still in the classical case ¢ = identity, any such T gives rise to another system with the same

v

ot oy it h e it el
nostarting with any given triple (4. B.C
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activations —under a mild nonlinearity axiom~ the natural group of symmetries is far smaller than that of
arbitrary nonsingular matrices. It is instead just a finite group, the “sign-permutation subgroup” given
by the action of matrices T" as above but having the special form of a permutation matrix composed with
a diagonal matrix performing at most a sign reversal at each neuron. That is, the input/output behavior
uniquely determines all the weights, except for a reordering of the variables and, for odd activation
functions, sign reversals of all incoming and outgoing weights at some units. As for linear systems,
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suitable genericity conditions, given by certain simple algebraic inequalities, are assumed. (The paper
also shows that it is possible to determine ¢ itself from the i/o0 data as well.) This result has the surprising
implication that a dimensionality reduction of the parameter space —as is the case with linear systems,
where canonical forms are central to identification methods~ is not possible for neural nets. Moreover,
the proof, based on certain computations with vector fields, is constructive, so it suggests a technique
in principle for obtaining parameters from i/o data. totally different from numerical methods based on
mismatch minimization; more on that subject later.

A recent variation using exponentials as activation functions was pursued as part of Renee Koplon’s
just-completed Ph.D. dissertation. in work supported under this project (cf. [43], [42]); the thesis
included a discussion of a simple MATLAB implementation of a realization algorithm.

Other “system theoretic” questions can be studied for recurrent nets as well. For instance, the recent
work in {8] looked at questions of observabilitv, that is, state distinguishability for a known system, as
opposed to determination of the systems parameters with a known initial state. This issue is central
to the construction of estimators as well as in further understanding minimality. The main result was
that observability can be characterized, if one assumes certain conditions on the nonlinearity and on the
system, in a manner very analogous to that of the linear case. Recall that for the latter, observability
is equivalent to the requirement that there not be any nontrivial A-invariant subspace included in the
kernel of C'. Surprisingly, the result generalizes in a natural manner, except that one now needs to
restrict attention to certain special “coordinate” spaces. More recent work concerns the simmultaneous
identification of parameters and initial states. This and other questions. such as the characterization of
CONiroilaDiilly properues. are ne subject of ongoing and piannea research by the Pis.
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language of theoretical computer science. The topic is the exploration of the wltimare capabilities of
recurrent nets viewed as analog computing devices. This area is a fascinating one. but very difficult
to approach. Purt of the problem is that, much interesting work notwithstanding, analog computation
is hard to model. as difficult questions about precision of data and readout of results are immediately
encountered —see the many references in our papers cited below.

In a recent series of papers as well as ongoing research by one of the Pls and a recently-finished
graduate student in the project —various aspects are covered in (5], [9], [10]. [28], [30], and [36]- we tock
the point of view that artificial neural nets provide an-opportunity to reexamine some of the foundations
of analog computation from the new perspective afforded by an extremely simple vet surprisingly rich
model, in a context where technigues from dynamical systems theory interact naturally with more
standard nofions from theoretical computer soience. Starting from such o medell thic worls derivad
resulis on deterministic versus nondeterministic computation, and reiated the study to standard concepts
in complexity theory.

1

One of the most unexpected conclusions was that, at least within the formalism of analog computation
descriced there. recuirent neural nets are a wnlversal model, in much the same manner as Turing macnines
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precisely defined— could ever have more power —again in a precisely defined sense— up to polynomial
time speedups. Particularly satisfying theoretically is the fact that the most natural categories for the
values of weights correlate perfectly with different natural subclasses of computing devices, and can be
summarized in an extremely elegant fashion (see table below).

Another unanticipated —and intriguing— conclusion was that the class NP of nondeterministic
polynomial-time digital computation is not included in what can be computed in polynomial time
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with analog devices (this is proved under standard assumptions of the “P#NP" type). Thus the solution
of combinatorial problems using analog devices may be subject to the same ultimate computational ob-
structions, for large problem sizes, as with digital computing. There are also many direct consequences
of the results that are immediate but nonetheless interesting on their own right. For example, the problem
of determining if a dynamical system z(¢ + 1) = o,(Az(t)) ever reaches an equilibrium point, from
a given initial state, is shown to be effectively undecidable (at least for c=w). (In Hopfield-type nets,
when dealing with content-addressable retrieval, the initial state is taken as the “input pattern” and the
final state, if there is convergence in finite time, as a class representative.)

Of course, there had been much work before ours concerning the computational power of “neural
networks” of various types, starting at least with the classical McCulloch-Pitts work in the early 1940s,
and continuing since. The new aspect of our work, which we believe is more appealing and which allows
obtaining precise and strong mathematical results, is that we do not assume a separate potentially infinite
“storage” device (such as tapes in Turing machines). This memory is instead encoded in real-valued
signals inside the system. Related to ours, and to a great extent our initial motivation, was the work by
Jordan Pollack on “neuring machines,” but technically our results are completely different, both in their
emphasis on efficient computation and in the general results. Perhaps the work closest in spirit is that
on real-number-based computation started by Blum, Shub, and Smale. In contrast to that line of work,
however, we do not assume that discontinuous, infinite precision “if-then-else” decisions are possible in
our model, nor can discrete results be read out of the system through infinite precision measurements.
Thus our model is more restricted than the one used by Blum et al. On the other hand, one might
[SG3ORANLy Wail to resinict tic models even more, [0 lnstafice 0 account (0r noise, and (s 1$ a topic
for further research.

To be o little more explicit. we studied in onr work discrerestime recurent networks (4 with
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finite automata.) Our main results —arter suiiable precise definitions— are summarized as follows,
stated for simplicity in terms of formal language recognition:

Weights | Capability | Polytime

Jp— . I
ineCgel reguial regutal g

rational ! recursive {(usual) P 3

real arbitrary { analogP §

Mars specifically, (1) with integer matrices 4. £, and (', one obtains just the power of finite automata;
(2) with rational weights recurrent networks are computationally equivalent, up to a constant time
speedug, o Taring machines: and (3) with reul parameiers, el possible languages, recursive or not, are
“computable.” but when imposing polvnomial-time constraints, the class that results is analog-P, for
analog polynomial time.

In 321 it s chown how to characterize computations by networks having weights in certain
Kolmogorov-complexity definable classes. It is impossible in this brief overview to explain the de-
talis Ol i Gehinuons and consiructions in tie above series Of papers, bul it should be emphasized
that a central role is played by a Cantor-like representation of internal values, which by virtue of its
self-similarity under scaling allows easy updates, and which because of its gaps allows finite-precision
decisions and measurements. Another feature is the equivalence between “analog-P” and the class P/poly
studied by Karp and Lipton, of nonuniform polynomial-size circuits or equivalently sparse-oracle Turing

Machines.
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3 Some More Details

This part of the report provides a few more details on some of the topics discussed earlier. Due to lack
of space much must be omitted, so references to the literature are given for most fine technical points.

Feedforward Nets

We first introduce some notation and terminology. We let F,, ;. be the set of functions f : R™ — R
computable by a 1HL net with n hidden units and activation o, that is, those that can be expressed
as in Equation (1), and write 75 1 := U,5q From- The set 72 := (F,)? of functions whose
coordinates are in F, ,, can be thought of as the set of all f : R™ — RP computable by 1HL nets with
multiple outputs.

Let I{ be a set, to be called the input set, and let ) be another set, the output set. In the discussion
below, for 1HL nets, &/ = R™. To measure discrepancy in outputs, it may be assumed that )} is a
metric space. For simplicity, assume from now on that Y = R, or Y is the subset {0, 1}, if binary data
is of interest. A labeled sample is a finite set S = {(u,yy),. .., (us,ys)}, where uy,...,us € Y and
Yis---.¥s € Y . (The y;’s are the “labels;” they are binary if y; € {0, 1}.) It is assumed that the sample
is consistent, that is, u; = u; implies y; = y;. A classifier is a function F : Y — Y. The error of F on
the labeled sample S is defined as

o

E(F.S):= V(F(u — )
z:l

A set F of classiners will be called an architecture. Typicallv, and below,
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that of nets with m=1 inputs, p= loutputs md n hidden units, thatis, 7, , := F, ,|; here the parameter
set has dimension r=3n+1. The sample S is loadable into F iff

inf E{(F.5)=
Fer

Note that for a binary sample 5 and a binary classifier ', E(F. S) just counts the number of misclassi-
1oarions, <o the binary case foadability corresponds to being able to obtain exactly the values y; by

suitable choice of f € F. For continuous-valued y,’s, loadability means that values arbitrarily close to

the decired 1< can he ohtained,
Une may define the capaciry ¢(F ) of F via the requirement that:

c(F) > k iff every S of cardinality x is loadable.

That is, ¢{F) = ~x means that ali finite 5 are loadable, and ¢(F) = Kk < o means that each 5 of
"""4;“‘1'." < tendable butsome 5 of Caﬁdiﬂ;‘.i::}' faop b s oot \J\,vplgu O Deliiial dehiiitiviis

of capacity measures are possible, in particular the VC dimension mentioned below as well as one in
terms of “generic” loadability; see [3].)

Various relations between capacity and number of neurons are known for nets with one hidden layer
and Heaviside or sigmoidal activations. It is an easy exercise to show that the results are independent
of the input dimension m, for any fixed activation type ¢ and fixed number of units n.
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In the case m = p = 1, parameter counts are interesting, so that case will be considered next.
Observe that, for 1HL nets with one input, and n hidden units (and p=1), there are 3n + 1 parameters
(appearing nonlinearly), though for 1, effectively only 2n + 1 matter. (In the case of the standard
sigmoid. a Jacobian computation shows that these parameters are independent.) For classification
purposes, it is routine to consider just the sign of the output of a neural net, and to classify an input
according to this sign. Thus one introduces the class H(F,, , ) consisting of all {0, 1 }-valued functions
of the form H( f(u)) with f € F,, ,. Of interest are scaling properties as n — oo. Let

CLSF(o) := Iinrgi.gfc(]:)/r(f

fOI']: = H(fn,a') and
INTP(0) := liminf ¢(F)/r(F)

for 7 = F, ;. These quantities measure (asymptotically) the ratio between the capacity (in the sense
just defined) and the number of parameters. For classification, it is shown in [3] that CLSF(H) = 1/3
and that CLSF(o) > 2/3 for any o which has a nonzero derivative at some point and is sigmoidal,
meaning technically now that both lim,_._ ., o(u) and lim,_. ., o(u) exist and are distinct. (It is also
shown there that if one allows “direct i/o connections,” that is to say, a linear term added to (1), then
CLSF(’H) doubles to 2/3, which is somewhat surprising.) The sigmoidal bound is best possible, in the
sense that for the piecewise linear 7 one has CLSF( ) = 2/3 while it is the case that CLSF"cr) = o for

same paper that Ii\“[?( H) = 1/3, and IN ( ) > 2/? if o is as above and Iso continuous. Ir 1S al<o
shown that INTP(7) = 2/3 and that 2/3 < INTP(os) < 1 for the standard sigmoid (the proof of the
upper bound in this latter case necessitaras some algehraic
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minimizing —as in the iﬂf“mmpw“' on’epproach- o sguared error functicn (or even o variation such

as an entropy measure, as also suggested in the neural nets literature). Blum and Rivest showed that any
possible neural net learning algorithm based on ﬁxed architectures faces severe computati'onal barriers,

+oehs

PN R
(Z?Sl/m'”o the activation }””'”” used is H. \'{O"“’ precisely, they looked the loading g PLUULCHX do ithere

ely, they looked at
exist weights that satisfv the desired ob]eczz»e? as a dec151on question in computational complexity.
This issue appears also in the algorithmic part of PAC learning thecry. For fixed input dimension and
Heaviside activations, loadability becomes essentialy a simple linear programming question, but for
such activations the problem is NP-hard when scaling with respect to the number of input or output
dimensions, as shown in their work. In view of neural network practice, a more relevant result to

understanding th2 ultimate Imitations of backpropazation and raleted technigues would be o detemiine
the complexity of the loading problem when using sigmoidal activations. From an example in [3], it is

known that the problem need not be NP-complete, for certain . But for the standard 51gm01d os the
matter is still open. If it were the case that the problem can be solved in polynomial time, this may
indicate that perhaps there is no need for complex seasches in feedforward leamning probiems. It is
unlikelv that this problem will he efficientlv decidahle in genaral bot with bounded innut dimension it
may very well be the case. As an intermediate step, one of the PIs and coworkers were recently able to
extend the Blum-Rivest result to 7, showing the NP-completeness of the loading problem for nets with
two hidden units and activation .

We now turn to some more details about the uniqueness question, which was mentioned in the above
discussion and also in some detail in the Overview part of the report (the remarks made there will not
be repeated).
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More on Uniqueness

Consider IHL-nets, indicated by the data X := (B, C., b, ¢co, o) (omitting & if obvious from the context)
and corresponding 1HL-computable functions f(u) = behy = C&,(Bu + b) + co as in Equation (1).
We assume for simplicity that ¢ is an odd function. Two networks X and 3 are (input/output) equivalent,
denoted T ~ £. if behy = behs (equality of functions). The question to be studied, then, is: to what
extent does £ ~ & imply £ = 57 We'll say that the function ¢ satisfies the independence property
("IP” from now on) if, for every positive integer [, nonzero real numbers ay, ..., a;, and real numbers
by, ..., b; for which the pairs (a;,b;), 7 = 1,....1 satisfy (a;,b;) # £(aj,b ) Vz # j, it must hold that
the funcnons
l,o(aju+b1),...,0(au+b)

are linearly independent. The function o satisfies the weak independence property (“WIP”) if the above
linear independence property is only required to hold for all pairs with b; = 0,1 = 1,...,1.

Let (B, C, b, co, o) be given, and denote by B, the ith row of the matrix B and by ¢; and b; the
ith entries of C' and b respectively. With these notations, behg(u) = co + Y i cio(Byu + b;) . Call
T irreducible if the following properties hold: (1) ¢; # O foreach i = 1,....n; (2) B; # 0 for each
1 =1,...,n; and (B;,b;) # £(Bj.b;) forall i # 5. Given X(B,C,b,cp.0), a sign-flip operation
consists of simultaneously reversing the signs of ¢;, B;, and b;, for some 7. A node-permutation consists
of interchanging (¢;, B;, b;) with (¢;, B;.b;), for some i, j. Two nets ¥ and 3 are sign-permutation (Sp)
equivalent if n = # and (B, C.b. cg) can be transformed into (B. (', b, &) by means of a finite numbe
of sign-tlips and node-permutations. Of course. sp-equivalent nets have the same behavior (since ¢ has
been assumed to be odd) With this termmolo gy, the following holds: Let o be odd and satisfv property
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WIP, the same statement is true for neis with no offsets.

Choroctennzing WP s essentially trivialy I o o o polinonial, Wiz does nos hoid. Comverseiy. i o
is odd and infinitely differentiable, and if there are an infinite number of nonzero derivatives '*)(0),
then o satisfies properrv wiIp. Nets with no offsets appear naturally in signal processing and control
applications, as there it is often the case that one requires that beh({0) = 0, that is, the zero input signal
causes no effect, corresponding to equilibrium initial states for a controller or filter. Results in this case
are closely related to work in the 1970s by Rugh and coworkers and by Boyd and Chua in the early
1980s in control theory. For analytic ¢ with all derivatives at zero nonvanishing, functions computable
by THL nets with no ofisets are dense on compacts among continuous functions; if o is odd and all odd
derivatives are zero do not vanish, one can so approximate all odd functions.

Tie more rejevant property 1P is far more restrictive. For obvious examples of functions not satisfying
IP, take ¢(2) = €7, any periodic function. or any polynomial. However, the most interesting activation
for neural network applications is o(z) = tanh(z), or equivalently after a linear transformation, the
standard sigmoid = In this case, one of tha Pls showed in {4] that the 1P property, and hence the desire
uniqueness statement, does hold. The proof was based on explicit computations for the particular
lunchoii tadifi{ ). A alleriaive provi is possibie, using andly(ic continuations, and aliows a more
general result to be established. The idea is that residues can be used to determine the weights.
The following is an easy to check sufficient condition for IP to hold (see [17]): ¢ is a real-analytic
function, and it extends to an analytic function o : € — C defined on a subset D C C of the form:
D = {|Imz| < A} \ {20, 20} for some X > O, where Im 29 = X and zq and Zq are singularities, that is,
there is a sequence z, — zp so that |o(z,)| — oo, and similarly for Z5. It is easy to see that tanh, as
well as most other functions that have appeared in the neural nets experimental literature such as arctan,
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satisfies the above sufficient property. (Fefferman has recently extended these ideas to several hidden
layers, based on the observation that weights in higher layers can be found as iterated accumulation
points of residues; his —highly nontrivial- results apply only to the particular case of tanh, however.)

Two Hidden Layers

As discussed in the Overview part, two-hidden-layer nets are necessary for inverse problems and in
particular for many control applications. Next we spell out some more details. For the topics treated
here, there is no need to define “2HL nets” themselves, but just their behavior. If ¢ : R — R is any
function, and m, p are positive integers, a function computed by a two-hidden layer (*2HL”) net with
m inputs and p outputs and activation function o is by definition one of the type fo&,0g0F0h, wWhere
/. g, and h are affine maps (n + [ is then called the number of “hidden units”). A function computable
by a 2HL net with direct input/output connections is one of the form Fu + f(u), where F is linear and
f is computable by a 2HL net. Before discussing control problems, one can understand the necessity
of 2HL nets by means of a more abstract type of question. Consider the following inversion problem:
Given a continuous function f : RP — R™, a compact subset C C R™ included in the image of f,
and an ¢ > 0, find a function ¢ : R™ — R? so that || f(¢(z)) — z|| < € forall z € C. One wants to
find a ¢ which is computable by a net, as done in giobal solutions of inverse kinematics problems —in
which case the function f is the direct kinematics. Unless we are restricting to a compact domain and
f is one-to-one, or if f is very special (e.g. linear), in general discontinuous functions ¢ are needed, so
nets with continuous ¢ cannct be used. However, and this is the interesting part, [2] establishes that neis
\vuquSt on¢ hidden layer, even if discontinuous o is allowed, are nor enough to guarantee the solution
of all such problems. On the other hand, it is shown there that nets with two hidden layers (usinc '/“
as the acuvation type) are sufficient. for everv possible f. (", and . The basic obquctxon 1S d'1°
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be close to such a characteristic function.

Consider now state-feedback controllers. The objective, given asystemd = f(z,u) with f{0.0)=0,
is to find a stabilizer u=k(z), £(0)=0, making z=0 a globally asymptotically stable state of the closed-
loop system & = f(z,k(z)). The first remark is that the existence of a smooth stabilizer k is essentially
equivalent to the possibility of stabilizing using IHL nets (with smooth ¢). (Thus the simple classes
of systems studied in many neurocontrol papers, which are typically feedback-linearizable and hence
continuously stabilizable, can be controlled using such 1HL nets.) More precisely, assume that f is
twice continuously differentiable, that & is also in C?, that the origin is an exponentially stable point
for z=f{z,k(z)), and that i is a compact subset of the domain of stability. Pick any o which has the
property that twice continuously differentiable functions can be approximated uniformly. together with
their derivatives, using 1HL nets (most interssting twice-differentiable scalar nonlinearities will do, as
shown in the work of Hornik and others). Then, one can conclude that there is also a different &, this
one a IHL net with activation ¢, for which exactly the same stabilization property holds. One only
neads to show thatif b, — & in C{ A7), with ali k,.(0)=0 —this last property can always be achieved by
simply considering k,(z) — k,(0) as an approximating sequence— then #=f(r, k,(z)) has the origin
as an exponentially stable pointand A is in the domain of attraction, for all large n. Finally, one knows
that there is a neighborhood V" of zero, independent of n, where exponential stability will hold, for all
n sufficiently large, because f(z,kn(z)) = A,z + gn(2), with 4,, — A and with g,(z) being o(z)
uniformly on z (this last part uses the fact that o approximates in C*(K')). Now continuity of solutions
on the right-hand side gives the result globally on K.

In general, smooth (or even continuous) stabilizers fail to exist. Thus 1HL-network feedback laws,
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with continuous o, do not provide a rich enough class of controllers. This motivates the search for
discontinuous feedback. It is easy to provide examples where I|HL H-nets will stabilize but no net with
continuous activations (hence implementing a continuous feedback) will. More surprisingly, IHLN
feedback laws, even with H activations, are not in general enough —intuitively, one is again trying to
solve inverse problems— but two hidden layer nets using H (and having direct i/o connections) are
always sufficient. More precisely, [2] shows that the weakest possible type of open-loop asymptotic
controllability is sufficient to imply the existence of (sampled) controllers built using such two-hidden
layer nets, which stabilize on compact subsets of the state space. On the other hand, an example is given
there of a system satisfying the asymptotic controllability condition but for which every possible 1HL
stabilizer gives rise to a nontrivial periodic orbit.

Linear Systems with Saturated Actuators

The problem of stabilization of linear systems subject to actuator saturation was introduced in the
Overview part. As mentioned there, the paper [11] (summary in [39]) provided a construction of
controllers that globally stabilize such systems. It was the first complete result for this important kind
of control problems, and the only conditions imposed are the obvious necessary ones, namely that
no eigenvalues of the uncontrolled system have positive real part and that the standard stabilizability
rank condition holds. Interestingly in the present context, it involves neural nets. As far as we know,
this result represents the first time that a neural net architecture has been shown to be perfectly suited
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g ={oy,-- i) of functions in &, we define a set G, (o) of functions f from R™ to R to be the class
of functions h : R™ — R given by

h(z) = ayoy(fi(z)) + a2oa( falz)) + - - + aror( fi(z))

where fi.---. fyarelinear functionsand a,. - - -. a4 are nonnegative constants such that g +- - -+a; < 1.
(In particular. we could of course pick 1HL nets with such small coefficients; more generally. one can
have different activations at each node.) Next, for an m-tuple ! = ([}, - - -,l ) of nonnegative integers,

define [Il = [} + -+ + [,,. For a finite sequence ¢ = (o,.- - - |L)— . ~-.0',1[ oo
of functions in &, we let G, jlo) denote the set of all functlons fe R” R™ that are of the form
(hy, - .hy), where h; € gn(a§.~~-.a,i:) for v = 1.2.---.m. (It is clear that G 1(0\ = G.lo)if
m=1.) ,

Let 6 > 0. We say that a function f : [0,4+2c) — R” is eventually bounded by é (and write

fl <ev 6). if there exists T > O such that | f(#)| < & forall ¢ > T. Given an n-dimensional system
&k o= fir)owe say that & is 5SS (small-input small-state) if for every = > O thersisa & > 0
such that, if e : [0.4+20) — R" is bounded. measurable. and eventuallv bounded by £. then everv
solution? — z(t) of £ = f(z) + e(t) is eventually bounded by ¢. For A > 0, N > 0, we say that £ is
SISS(A, N)if, whenever 0 < § < A, it follows that, if e : [0, +00) — R" is bounded, measurable,
and eventually bounded by ¢, then every solution of z = f(z) + e(t) is eventually bounded by N'§. The
systemis STSS if itis STSS(A, N) for some A > 0, N > 0. Forasystem ¢ = f(z,u), we say that
afeedback u = k() is stabilizing if O is a globally asymptotically stable equilibrium of the closed-loop
system £ = f(z,k(z)). If, in addition, this closed-loop system is SI5Sy, then we will say that & is
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51551 -stabilizing. The S1S5S property, besides being of interest in itself, is essential in allowing a
proof by induction. For a square matrix A, we let u( A) denote the number of eigenvalues =z of 4 such
that Re z = 0 and Im z > 0, counting multiplicities.

Our main result is as follows; it asserts the existence of a stabilizer of the above type, and also
provides an estimate on the number of “hidden units” needed: Let X be a linear system & = Az + Bu
with state space R™ and input space R™. Assume that X is asymptotically null-controllable, i.e. that
all the eigenvalues of A have nonpositive real parts and all the eigenvalues of the uncontrollable part
of A have strictly negative real parts. Let i = p(A). Let o = (oy,---,0,) be an arbitrary sequence
of bounded funcrions belonging to S. Then there exists an m-tuple l = (1, -, 1) of nonnegative
integers such that |l| = p, for which there are SI15 5} -stabilizing feedback u = —kg(z) such that (a)
kg € gnyl(a') and (b) the linearizations of the closed-loop systems are asymptotically stable.

The paper [34] developed an explicit design concerning a longitudinal flight model of an F-8 aircraft,
with saturations on the elevator rate, and tested the obtained controller on the original nonlinear model.
(We picked relative small values of these saturations, to analyze our control design under demanding
conditions.) We chose the F-8 example since all parameters and typical trim conditions are publicly
available, and the model has been often used as a test case for aircraft control designs. The procedure
we followed consisted of first linearizing about an operating point and then constructing a globally
stabilizing controller for the resulting linearization, with respect to this given trim condition, following
the steps in our papers. Finally we proceed to compare the performance of the controller —applied to
the original nonlinear airplane and starting reasonably far from the desired operating point— with the
“naive” controlier that would result from applying a linear feedback law which would stabilize in the
absence of saturations. The objective of the work was to show that the calculations in the abstract proofs
can indeed be carried out explicitly (though this an extremely simple casz compared to the generality
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results to be encouraging and indicating the usefulness of further work along this direction. In one of
the cases simulated, the “naive” design would stabilize as well. though the difference in performance
is quite striking. In another case, the "naive” design results in instability, while the one given with our
method stabilizes. The overall performance of the system was not satisfactory for practical applications
(and in any case, the saturation levels were far to small to be of interest except perhans in failure modes),
but of course this was just a first, simple, effort; much more work needs to be done.

VN T e

PAC Learning and VC dimension =

We now elaborate some more on the topic, already brought up in the Overview part, of learning-theoretic
issues. We first review the technical framewaork. The definitions are as follows (they are standard, but the
terminology 1s changad a bit). Aninputspace{ as well as a collection F of maps &4 — {0, 1} are given.
The setl{ 1s assumed to be countable, or an Euclidean space, and the maps in F are assumed to be Borel
measurable. In addition, mild regularity assumptions are made which insure that all sets appearing below
are measurable (detaifs are omitted). Let 1 be the setof all sequences w = (uy, fluy)). ... (uy. flug))
overall s > 1. (uy,....us) € 4%, and f € F. An identifierisamap = : W — F. The value of c ona
sequence such as the above is denoted as .. The error of ¢ with respect to a probability measure P
onl{,an f € F,and a sequence (uy,...,u,) € U, is Er (P, f,uy,...,us) := Prob g, (u) # f(u)],
where the probability is being understood with respect to P. (This is just L' distance between two
binary functions.) The class F is (uniformly) learnable if there is some identifier ¢ with the following
property: For each £, > 0 there is some s so that, for every probability P and every f € F,

Prob [Err (P, fyup,...,us) > €] < 8
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(where the probability is being understood with respect to P® on i*). In the leanable case, the
function s(<, ) which provides, for any given ¢ and 4, the smallest possible s as above, is called the
sample complexity of the class F. If learnability holds then s(e, é) is automatically bounded by a
polynomial in 1/ and 1/6, in fact by —(c/<)log(é<), where c is a constant that depends only on the
class F. If there is any identifier at all in the above sense, then one can always use the following naive
identification procedure: just pick any element f which is consistent with the observed data. This
leads computationally to the loading question discussed earlier. In the statistics literature this “naive
technique” is a particular case of what is called empirical risk minimization.

Checking learnability is in principle a difficult issue, and the introduction of the following combina-
torial concept is extremely useful in that regard. A subset § = {uy,...,us} of i is said to be shattered
by the class of binary functions F if all possible binary labeled samples {(u, y1), ..., (us,¥s)} (all
yi € {0, 1}) are loadable into F. The Vapnik-Chervonenkis dimension VC (F) is the supremum (possi-
bly infinite) of the set of integers « for which there is some set S of cardinality x that can be shattered
by F. (Thus, vC(F) is at least as large as the capacity ¢(F) defined earlier) The main result, due
to Blumer, Ehrenfeucht, Haussler, and Warmuth, but closely related to previous results by Vapnik and
others is: The class F is learnable if and only if VC{F) < oc. So the VC dimension completely
characterizes learnability with respect to unknown distributions; in fact, the constant “c” in the sample
complexity bound given earlier is a simple function of the number vC (), independent of F itself.

In neural net classification problems, where the sign of the output of a net is used to decide
membership in a set, one is interested in classes of the type F = H(F, ,.m); these are the classifiers
implementable by THL nets with with n hidden units and m inputs (n and m fixed) and activation
o. The best-known result is a by now classical one due to Baum and Haussler. which asserts that
VCIF) < dmn{l + log{n)), for the choice ¢ = M, where ¢ 15 a small constant. Thus THL nets with
threshold activations are learnable in the above sense. In practice. however, one uses differentiabie @,
pvolnally o IDis eoyy 1o constnuet examplos of sizmeids. even exremely weli-behaved oncs. for which
the VC dimension of the class H(F, ».m ) is infinite; see [3]. For some time, the question of finiteness
of vel F) for F = HIF. . ..)and 7 = ~,, and herce (information-theorstic) leamebility when using
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the standard architectures, was open. For bounded weights there were results by White, Haussler and
others. but VC bounds depend on the assumed bounds on weights. The question was recently settled
theoretically in [33], which showed that indeed vC(F) < ¢, for activation o,. Thus sigmeidal nets
appear to have some special properties, vis a vis other possible more general parametric classes of
functions, at least from a learnability viewpoint. The paper [33] provided several other results as well,
including finiteness of the Pollard-Haussler pseudedimension, which gives also learnability of real-
valued as opposed to merely binary functions, and results on “teaching dimension” related to a different
paradigm of learning introduced by Goldman and Kearns. The proof VC dimension resultin [33] hinged
on recent techniques from model theorv, combining recent results of Wilkie on order-minimality with

work by Laskowski.

Recurrent Nets: Identifiability, Obcervability

We now tm to recurrent neural netwarks evolying eitherin diserete orin continuoustime. The dynamics
and observation map of such systems can be described by a discrete or continuous time system in the
usual sense of control theory, with the special form of the difference or differential equations as in
Equation (4), that is, 2% (or¢) = G(Az + Bu), y = Cz. As before, we use the superscripts “+”
and “.” to denote time-shift and time-derivative respectively, and we omit the time arguments t. For
the continuous-time case, we assume that the function o is globally Lipschitz, so that the existence and

uniqueness of solutions for the differential equation is guaranteed for all times.
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A system of the type in Equation (4) is specified by the data X := (A4, B, C, ¢); as in the feedforward
case, we again omit ¢ if obvious from the context. {One could add constant terms and consider more
general systemsz™ (or &) = 6(Az + Bu+b), y = Cz+cy. Such more general systems can be reduced
to the above case, by adding a state which has a constant value. Note however that this transformation
means that one cannot take the initial state as zero while keeping the above form, and this in fact gives
rise to highly nontrivial complications, discussed later.)

As mentioned earlier, the Pls and graduate students have done substantial work on queStions of
parameter identifiability (the possibility of recovering the entries of the matrices A, B, and C from
the input/output map u(-) — y(-) of the system) as well as other related questions such as state-
observability. The issue is intimately related with the material discussed earlier on weight determination
for feedforward nets, but mathematically the topics are quite different. In particular, some of the technical
restrictions regarding o can be relaxed. because in this context it is often the case that the initial state is
an equilibrium state, and this means that property WIP is closer to the problem than property IP. On the
other hand, the problem becomes harder because of the dynamics, especially in continuous-time, and
tools from nonlinear systems must be employed.

We next provide some more details. Depending on the interpretation (discrete or continuous time),
one defines an appropriate behavior behy, mapping suitable spaces of input functions into spaces of
output functions, again in the standard sense of control theory, for any fixed initial state. For instance, in
continuous time, one proceeds as follows: For any measurable essentially bounded u(-) : [0, 7] —
denote by ¢(t, £, 1) the solution at time ¢ with initial state (0) = &; this is defined on [0. T because of
the global Lipschitz assumption. For each input. let behg(u) be the output function corresponding to the
initial state z(0) = 0, that is. behy(u)(t) := C(&(t.0. u)). Two recurrent nets X and £ (necessarilv w1th
the same numbers of 1’1th and ouiput channels, i.e. with p = t) and 11 = 7y are equz valent, denoted
~3. (in discrete or continuous time, depending on the context) if it hoids that beng = behs.

™M

Assume [rom now on that o 1s infinitely dirferenniable around zero, and that it satisfies the following
extremely mild nonlinearity assumption:

o(0)=0, 01(0) £0, O’N(O) =0, ¢9(0) £ 0forsomeg > 2. (%)

(Far less 1s needed for the results to be quoted, but this is certainly sufficient. For odd analytic functions,
we are just asking that o be nonlinear and nonsingular at zero.) Let S(n, m, p) denote the set of all
recurrent nets (A4, B, C, ) with fixed n. m, pand any fixed ¢ as above. Two nets X and $in S(n, m,p)
are sign-permutation equivalent if there exists a nonsingular matrix 7" such that

T-'AT=A.T'B=B.CcT =C,

and 7' has the special form: T = PD. where P is a permutation matrix and D = diaglA;, . ... A,),
with each A; = £1. The nets Z and X are just permutation equivalent if the above holds with D = I,
that is, T' is a permutation matrix.

Let B™™ be the class of n x m real matrices B for which: b, ; # O for all 4. j, and for each i # j,

there exists some & such that |b; x| # |6 | For any choice of positive integers n, m, p, denote by Stmop
the cet of all triples of matrices (4 B (), 4 € RM** B c pPPX7™ (7 ¢ R”X” which are “canonical”

(observable and controllable). This is a generic set of triples, in the sense that the entries of those which
do not satisfy the property form a proper Zariski-closed subset of R™ *"+"P  Finpally, let:

S(n,m,p) = {2(4,B,C,0)| B € B"™ and (4,B,C) € S5, -

Then, in (7], a general result was proved, for a somewhat larger class of systems, which in particular
implies:
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Assume that o is odd and satisfies property (*). Then 3. ~ ¥ if and only if £ and £ are
sign-permutation equivalent.

(An analogous result can be proved when ¢ is not odd, resulting in just permutation equivalence.) The
proof starts with the obvious idea of considering the parameters as extra constant states and computing the
observables for the extended systems; this involves considering iterated Lie derivatives of observations
under the vector fields defining the system and is a routine approach in nonlinear control. However,
and this is the nontrivial part, extracting enough information from these Lie derivatives is not entirely
easy, and the proof centers on that issue. The reference cited also included results for the more general
class of systems of the Hopfield-type ¢ = —Da + & (Az + Bu), as well as results showing that &
itself can be identified from the black-box data; there is no room here to explain all these results. Also,
discrete-time results are now available; see [35]. Moreover, if the activation is analytic, the response to
a single long-enough input function is theoretically enough for identification of all parameters, just as
impulse-responses are used in linear systems theory; this is also explained in [7].

A result on observability was also recently given, in [8]. We start by slighly enlarging the class
B™™, to B, the class of those B € R™ ™ for which no row vanishes and for which the second
condition in the definition of B™™ (¥i # j, 3k s.t. [b; x| # |b;«]) holds. Fix n, m. We denote by S
the set of all recurrent nets for which B € B, ., and o satisfies the property IP. Lete;,i = 1,...,n
denote the canonical basis elements in R". A subspace V' of the form V' = span {e;,,..., €}, for
some [ > 0 and some subset of the e;’s, will be called a coordinate subspace; that is, coordinate
subspaces are those invariant under all the projections =, : R® — R*, m¢; = {56, Sums of
coordinate subspaces are again of that form. Thus, for each pair of matrices (A, C') with A € R™*"
and C' € RPX™ there is a unique largest A-invariant coordinate subspace included in ker C'; we denote
this by O(A.C'). One way to compute O, = O 4.C) is by the following recursive procedure:
O = ker (. OFF = OFNATIOE N ATTOR N NATIO =0 — 1.0, = O which

(e}

an be implemented by an algorithm which employs a number of elementary algebraic operations which
is polynomial on the size of n and m. (Also one could use graph-theoretic computations instead.)
The two main results in the above reference (one for discrete and another one for continuous time) are
summarized as:

2 € §isobservable if and onlv if ker ANker ' = O (A, C) = 0.

Surprisingly, this is a very simple characterization, and easy to check. Since the corresponding linear
system (if o would have been the identity) is observable if and only if O( A4, C), the largest A-invariant
subspace included in kerC, is zero, and since both O.(4,C) and ker A N kerC are subspaces of
O(4,C"), one gets in particular that if £ € S and the pair of matrices (4, C) is observable then X is
observable, but the converse does not hold.

Recurrent Nets as Universal Systems Models, and an Algorithmic Approach

Recurrent nets provide universal identification models, in a suitable sense. To be more precise, we
may consider continuous- or discrete-time, time-invariant systems £: ¢ [orz¥ ] = f(z,u),y = h(z)
under standard smoothness assumptions (for instance, z(t) € R", u(t) € R™, and y(t) € R? for all
t,and f and h are continuously differentiable). It is not hard to prove that, on compacts and for finite
time intervals, the behavior of Z can be approximately simulated by the behavior of a recurrent network,
assuming that one uses any activation ¢ which is universal, in the sense that dilates and translates of ¢
are dense on continuous functions with the compact-open topology. (If o is locally Riemann integrable,
it is a universal activation if and only if it is not a polynomial, as known from recent results by Leshno
and others.)
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By approximate simulation we mean as follows. In general, assume given two systems X and T as
above, where tildes denote data associated to the second system, and with same number of inputs and
outputs (but possibly 7 # n). Suppose also given compact subsets &'y C R™ and A C R™, as well
asan¢ > 0and a7 > 0. Suppose further (this simplifies definitions, but can be relaxed) that for each
initial state o € A’} and each measurable control u(+) : [0,T] — K> the solution ¢(¢, zo, u) is defined
forallt € [0,T]. The system T simulates T on the sets Ky, K, 1:1 time T and up to accuracy ¢ if there
exist two continuous mappings « : R" — R" and B : R™ — R so that the following property holds:
For each zo € K| and each u(-) : [0,T] — K3, denote z(t) := &(t,zo, ) and Z(t) := o(¢, B(z0), u);
then this second function is defined for all t € [0, T, and

(1) = «(F ) <&, [Ih((t)) — RED) < e

for all such ¢. One may ask for more regularity properties of the maps o and [ as part of the definition;
in any case the maps constructed in the reference given below are at least differentiable. Assume that ¢
is a universal activation, in the sense defined earlier. Then, for each system X and for each Ky, K3, ¢, T
as above, there is a o-system 3. that simulates T on the sets K| , K7 intime T and up to accuracy €. The
proof if not hard, and it involves first simply using universality in order to approximate the right-hand
side of the original equation, and then introducing dynamics for the “hidden units” consistently with the
equations. This second part requires a little care; for details, see for instance [31]. (Some variations of
this result were given earlier and independently in work by Polycarpou and Ioannou, and by Matthews,
under more restrictive assumptions and with somewhat different definitions and conclusions.)

Thus, recurrent nets approximate a wide class of nonlinear plants. Note, however, that approxima-
tions are only valid on compact subsets of the state space and for finite time, so that many interesting
dynamical charactenistics are not reflected. Since recurrent nets are being used in many application
areas (recall the earlier discussion). this universalitv property is of some interest. This is analogous to
the role of bilinear systems, which had been proposed previously (work by Fliess and by the second
PI in the mid-1970s) as universal models. As with bilinear systems, it is obvious that if one imposes
exira stability assumptions "fading mermory " type) it will be possible to obtain global approximations,
but this is probably not very useful, as stability is often a goal of control rather than an assumption. In
any case, the results justify the study of recurrent nets at least as much as they justify the investment
in the study of bilinear systems. And the parameter identification result mentioned earlier seems to say
that they are from an estimation viewpoint more appealing. (Bilinear realization provides uniqueness
of internal parameters only up to GL(n).)

The philosophy of systems modeling using this approach would be to postulate a model of this
form (using the fact that the true plant can be so approximated) and then to identify parameters under
this assumption. This is fairly much what is done in practice with linear systems; true systems are
nonlinear, but linear models often approximate well-enough that the approach makes sense. (Of course,
in practice one needs to account for noise, and robust identification techniques are being developed, in
the linear case, to deal with the fact that the true plant is not in the class.) In any case, next we suggest a
possible approach to numerical identification of a recurrent model for a very special (but still universal)
activation. The idea is to use a Fourier-type expansion in the right-hand side of equations. We have
recently started looking at the use of o(z) = exp(iz) as the activation function; let’s for now call a
recurrent net with this activation function an exp-system. This is a natural function to use as we can see
from its utilization in Fourier analysis. With the introduction of complex numbers and the use of the
exponential, we are able to reduce a complicated nonlinearity in the output to a product. The benefit
is that we may use certain input/output pairs to exactly identify the parameters A, B, C, z for a given
exp-system in closed form, with no need to solve any nonlinear programming problems. To give the
flavor of the algorithm that is possible —assuming to start with that there is no noise in measurements—
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suppose we have a system of known dimension n which is modeled by an exp-system, but with unknown
values of A, B, C, xo. We take the single-input case for simplicity (m=1) and allow for complex entries
in 4, B,C, z,.

Assuming we may reset the system to the (mathematically unknown but presumably physically
known) initial state and apply any input to obtain the corresponding output, we can identify those
parameters using the following procedure. To compute the values of B, we apply inputs of length
one with integer values 0,1,...,2n — 1. The resulting 2n output values Co(Azg), Co(Azg +
B),...,Co(Azg+ (2n — 1)B), can be written as

€L Cdiag(o(br),-..,0(8u))1,..., Cdiag (o(5)™ ..., 0(52)" ") L

where | is the column vector (1, ..., 1)". Here C is some vector, in general different from C if zg # 0.
These elements can be seen as the first 2n Markov parameters (or impulse response parameters) for
an n-dimensional linear system whose “A” matrix has eigenvalues exactly equal to (b,),...,0(by,).
These eigenvalues can be obtained by applying linear realization techniques to the sequence. This
step of the algorithm is based on Hankel-matrix techniques that are classical in the context of linear
recurrences and their multivariable extensions developed in control theory. The method appears in
many other areas; for instance in coding theory for decoding BCH codes, and in learning theory for
sparse polynomial interpolation. In order to actually compute by, ..., b,, one would need to apply
the “inverse” of o this introduces some complication since there are many complex logarithms, but
1t can be taken care of by applying a different set of multiples of a different input value. The next
step in the identification procedure is to determine the vector C. For this, apply inputs of length 2
with integer values ranging from O to » + 1 for the first input and 0 to n — 1 for the second. This
provides 2 Vandermonde system of equations which can then be solved (again there are complications
because of complex iogs). Finally, 4 and xg can be obtained. We omit more details here, as in any case
not all aspects are yet well understood. But in a just-completed Ph.D. dissertation, in work supported
under this project. our graduate student Koplon (cf. (43], [42]) has provided a theoretical framework
and programmed a quick MATLAB implementation of the above algorithm, and without any noise in
measurements it performs correctly, retrieving an unknown system. This is a major research area, of
which we have barely scratched the surface. Much is needed, from the use of least-squares techniques
and methods based on Hankel-norm approximation to deal with noise (or model mismatch), to the
development of efficient algorithms, to the study of algorithms that use random as opposed to chosen
data (in learning terms, online as opposed to query-based).




4 RELEVANT PUBLICATIONS 27

4 Relevant Publications

1.

10.

11.

12.

13.

14.

16.

E. Sontag, H.J. Sussmann, “Backpropagation separates where perceptrons do,” Neural Networks
4(1991): 243-249.

. E. Sontag, “Feedback stabilization using two-hidden-layer nets,” IEEE Trans. Neural Networks

3(1992): 981-990.

E. Sontag, “Feedforward nets for interpolation and classification,” J. Comp. Syst. Sci. 45(1992):
20-48.

H.J. Sussmann, “Uniqueness of the weights for minimal feedforward nets with a given input-output
map,’ Neural Networks 5 (1992), pp. 589-593.

. HT. Siegelmann, E. Sontag, “Turing computability with neural nets,” Appl. Math. Lett.

4(6)(1991): 77-80.

R. Koplon, E. Sontag, “Linear systems with sign-observations,” SIAM J. Control and Optimization
31(1993): 1245-1266.

. F. Albertini, E. Sontag, “For neural networks, function determines form,” Neural Networks

6(1993): 975-990.

. F. Albertini, E. Sontag, “State observability in recurrent neural networks,” Systems & Control

Letters 22(1994): 235-244.

. H.T. Siegelmann, E. Sontag, “On the computational power of neural nets,” J. Comp. Syst. Sci., to

appear.

H.T. Siegelmann, E. Sontag, “Analog computation, neural networks, and circuits,” Theor. Comp.
Sci., to appear.

H.J. Sussmann, E. Sontag, Y. Yang, “A general result on the stabilization of linear systems using
bounded controls,” I[EEE Trans. Autom. Control, to appear.

R. Koplon, E. Sontag, and M. Hautus, “Observability of linear systems with saturated outputs,”
Linear Algebra and Applics. 205-206(1994): 909-936.

B. DasGupta, H.T. Siegelmann, E. Sontag, “On the complexity of training neural networks with
continuous activation functions,” IEEE Trans. Neural Networks, to appear.

M. Donahue, L. Gurvits, C. Darken, and E. Sontag, “Rates of convex approximation in non-Hilbert
spaces,” submitted.

. H.J. Sussmann, “On the use of neural networks in the analysis of nonlinear systems: realiza-

tion, approximation, and feedback control,” in Proc. Congreés Satellite du Congrés Européen de
Mathématiques on “Aspects Théoriques des Réseaux de Neurones,” Paris, 1992.

H.T. Siegelmann, E. Sontag, and L. Giles “The complexity of language recognition by neural net-
works,” in Algorithms, Software, Architecture (J. van Leeuwen, ed), North Holland, Amsterdam,
1992, pp. 329-335.




4 RELEVANT PUBLICATIONS 28

17.

18.

19.

20.

21.

22,

23,

24.

[
wn

26.

27.

28.

29.

30.

31.

32.

F. Albertini, E. Sontag, and V. Maillot, “Uniqueness of weights for neural networks,” in Artificial
Neural Networks for Speech and Vision (R. Mammone, ed.), Chapman and Hall, London, 1993,
pp. 115-125.

E. Sontag, “Neural networks for control,” in Essays on Control: Perspectives in the Theory and its
Applications (H.L. Trentelman and J.C. Willems, eds.), Birkhauser, Boston, 1993, pp. 339-380.

B. DasGupta, H.T. Siegelmann, E. Sontag, “On the Intractability of Loading Neural Networks,”
in Theoretical Advances in Neural Computation and Learning (Roychowdhury, V. P, Siu K. Y.,
and Orlitsky A., eds.), Kluwer, Boston, 1994.

R. Koplon, E. Sontag, “Quantized systems, saturated measurements, and sign-linear systems,” in
Proc. Conf. Inform. Sci. and Systems, John Hopkins University, 1991, pp. 134-139.

R. Koplon, E. Sontag, “Algebraic theory of sign-linear systems,” in Proc. Amer. Automatic Control
Conference, Boston, 1991, pp. 799-804.

E. Sontag, “Feedback Stabilization Using Two-Hidden-Layer Nets,” in Proc. Amer. Automatic
Control Conference, Boston, 1991, pp. 815-820.

H.J. Sussmann, and Y. Yang, “On the stabilizability of multiple integrators by means of bounded
feedback controls,” Proc. 30th 1.E.E.E. Conf. Decision and Control, Brighton, UK (1991), pp.
70-72.

W. Maass, G. Schnitger, and E. Sontag, “On the computational power of sigmoid versus boolean
threshold circuits,” Proc. of the 32nd Annual IEEE Conference on Foundations of Computer
Science, San Juan, Puerto Rico, 1991, pp. 767-776.

. R.Koplon, E. Sontag, and M. Hautus, “Output-Saturated Systems,” Proc. Amer. Automatic Control

Conference, Chicago, 1992, pp. 2504-2509.

Y. Yang, H.J. Sussmann, E. Sontag, “Stabilization of linear systems with bounded controls,”
in Proc. Nonlinear Control Systems Design Symp., Bordeaux, 1992 (M. Fliess, Ed.), IFAC
Publications, pp. 15-20.

E. Sontag, “Systems combining linearity and saturations, and relations to “neural nets,” in Proc.
Nonlinear Control Systems Design Symp., Bordeaux, 1992 (M. Fliess, Ed.), IFAC Publications,
pp. 242-247.

H.T. Siegelmann, E. Sontag, “Some results on computing with “neural nets,” Proc. IEEE Conf.
Decision and Control, Tucson, 1992, TEEE Publications, 1992, pp. 1476-1481.

F. Albertini, E. Sontag, “For neural networks, function determines form,” Proc. IEEE Conf.
Decision and Control, Tucson, 1992, IEEE Publications, 1992, pp. 26-31.

H.T. Siegelmann, E. Sontag, “On the computational power of neural nets,” in Proc. Fifth ACM
Workshop on Computational Learning Theory, Pittsburgh, 1992, pp. 440-449.

E. Sontag, “Neural nets as systems models and controllers,” in Proc. Seventh Yale Workshop on
Adaptive and Learning Systems, pp. 73-79, Yale University, 1992.

J.L. Balcdzar, R. Gavalda, H.T. Siegelmann, E. Sontag, “Some structural complexity aspects of
neural computation,” in Proc. 8th Annual IEEE Conf. Structure in Complexity Theory, San Diego,
1993, pp. 253-265.




4 RELEVANT PUBLICATIONS 29

33.

34.

35.

36.

37.

38.

39.

40.

41.

43.

45.

A. Macintyre and E. Sontag, “Finiteness results for sigmoidal ‘neural’ networks,” in Proc. 25th
Annual Symp. Theory Computing, San Diego, 1993, pp. 325-334.

E. Sontag, Y. Yang, “Stabilization with saturated actuators, a worked example: F-8 longitudinal
flight control,” Proc. 1993 IEEE Conf. on Aerospace Control Systems, Thousand Oaks, CA, 1993,
pp- 289-293.

F. Albertini, E. Sontag, “Identifiability of discrete-time neural networks,” Proc. European Control
Conference, Groningen, 1993, pp. 460-465.

H.T. Siegelmann, E. Sontag, “Analog computation via neural networks,” in Proc. 2nd Israel
Symposium on Theory of Computing and Systems (ISTCS93), IEEE Computer Society Press,
1993.

C. Darken, C., M. Donahue, L. Gurvits, and E. Sontag, “Rate of approximation results motivated
by robust neural network learning,” in Proc. Sixth ACM Workshop on Computational Learning
Theory, Santa Cruz, 1993.

F. Albertini, E. Sontag, “State observability in recurrent neural networks,” Proc. IEEE Conf.
Decision and Control, San Antonio, 1993, IEEE Publications, 1993, pp. 3706-3707.

H.J. Sussmann, E. Sontag, Y. Yang, “A general result on the stabilization of linear systems
using bounded controls,” Proc. IEEE Conf. Decision and Control, San Antonio, 1993, IEEE
Publications, 1993, pp. 1802-1807.

R. Koplon, E. Sontag, “Sign-linear systems as cascades of automata and continuous variable
systems,” Proc. IEEE Conf. Decision and Control, San Antonio, 1993, IEEE Publications, 1993,
pp- 2290-2291.

B. DasGupta, H.T. Siegelmann, E. Sontag, “On a learnability question associated to neural
networks with continuous activations,” Proc. 7th ACM Conference on Learning Theory, 1994, pp.
47-56.

. R. Koplon, E. Sontag, “Techniques for parameter reconstruction in Fourier-Neural recurrent

networks,” in Proc. IEEE Conf. Decision and Control, Orlando, 1994, IEEE Publications, 1994,
to appear.

-

Completed Ph.D. Theses Partially Supported by Grant

R. Koplon, Linear Systems with Constrained Outputs and Transitions, Ph.D. Dissertation, Rutgers
University, 1994,

. H.T. Siegelmann, Theoretical Foundations of Recurrent Neural Networks, Ph.D. Dissertation,

Rutgers University, 1993.

Y. Yang, Global Stabilization of Linear Systems with Bounded Feedback, Ph.D. Dissertation,
Rutgers University, 1993.




